Skip to contents

Manage R Configuration at the Command Line

Build status CRAN version CRAN RStudio mirror downloads

Manage R configuration using files (YAML, JSON, INI, TXT) JSON strings and command line arguments. Command line arguments can be used to override configuration. Period-separated command line flags are parsed as hierarchical lists. Environment variables, R global variables, and configuration values can be substituted.

Try rconfig in your browser: click the Gitpod button, then cd inst/examples in the VS Code terminal to run the Rscript example from this README!

Open in Gitpod

Install

# CRAN version
install.packages("rconfig")

# Development version from R-universe
install.packages("rconfig", repos = "https://analythium.r-universe.dev")

Another config package?

There are other R packages to manage configs:

  • config has nice inheritance rules, and it even scans parent directories for YAML config files
  • configr has nice substitution/interpolation features and supports YAML, JSON, TOML, and INI file formats

These package are fantastic if you are managing deployments at different stages of the life cycle, i.e. testing/staging/production.

However, when you use Rscript from the command line, you often do not want to manage too many configuration files, but want a quick way to override some of the default settings.

The rconfig package provides various ways to override defaults, and instead of changing the active configuration (as in the config package), you can merge lists in order to arrive at a final configuration. These are very similar concepts, but not quite the same.

The rconfig package has the following features:

  • uses default configuration file
  • file based override with the -f or --file flags (accepts JSON, YAML, INI, and plain text files)
  • JSON string based override with the -j or --json flags
  • other command line arguments are merged too, e.g. --cores 4
  • heuristic rules are used to coerce command line values to the right type
  • R expressions starting with !expr are evaluated by default, this behavior can be turned off (same feature can be found in the yaml and config packages, but here it works with plain text and JSON too)
  • period-separated command line arguments are parsed as hierarchical lists, e.g. --user.name Joe will be added as user$name to the config list
  • nested configurations can also be flattened
  • command line flags without a value will evaluate to TRUE, e.g. --verbose
  • environment variables (${VALUE}), R global variables (@{VALUE}), and configuration values (#{VALUE}) can be substituted
  • differentiates verb/noun syntax, where verbs are sub-commands following the R script file name and preceding the command line flags (starting with - or --)

This looks very similar to what littler, getopt, and optparse are supposed to do. You are right. These packages offer amazing command line experience once you have a solid interface. In an iterative and evolving research and development situation, however, rconfig gives you agility.

Moreover, the rconfig package offers various ways for substituting environment variables, R global variables, and even substituting configuration values. The GetoptLong package has similar functionality but its focus is on command line interfaces and not configuration. Other tools, such as sprintf, glue, rprintf, and whiskers are aimed at substituting values from R expressions.

If you are not yet convinced, here is a quick teaser. This is the content of the default configuration file, rconfig.yml:

trials: 5
dataset: "demo-data.csv"
cores: !expr getOption("mc.cores", 1L)
user:
  name: "demo"
description: |
  This is a multi line
  description.

Let’s use a simple R script to print out the configs:

#!/usr/bin/env Rscript
options("rconfig.debug"=TRUE)
str(rconfig::rconfig())

Now you can override the default configuration using another file, a JSON string, and some other flags. Notice the variable substitution for user name!

export USER=Jane

Rscript --vanilla test.R deploy \
  -f rconfig-prod.yml \
  -j '{"trials":30,"dataset":"full-data.csv"}' \
  --user.name $USER \
  --verbose
# List of 6
#  $ trials     : int 30
#  $ dataset    : chr "full-data.csv"
#  $ cores      : int 1
#  $ user       :List of 1
#   ..$ name: chr "Jane"
#  $ description: chr "This is a multi line\ndescription."
#  $ verbose    : logi TRUE
#  - attr(*, "trace")=List of 2
#   ..$ kind : chr "merged"
#   ..$ value:List of 4
#   .. ..$ :List of 2
#   .. .. ..$ kind : chr "file"
#   .. .. ..$ value: chr "/Users/Peter/git/github.com/analythium/rconfig/inst/examples/rconfig.yml"
#   .. ..$ :List of 2
#   .. .. ..$ kind : chr "file"
#   .. .. ..$ value: chr "/Users/Peter/git/github.com/analythium/rconfig/inst/examples/rconfig-prod.yml"
#   .. ..$ :List of 2
#   .. .. ..$ kind : chr "json"
#   .. .. ..$ value: chr "{\"trials\":30,\"dataset\":\"full-data.csv\"}"
#   .. ..$ :List of 2
#   .. .. ..$ kind : chr "args"
#   .. .. ..$ value: chr "deploy --user.name Jane --verbose"
#  - attr(*, "command")= chr "deploy"
#  - attr(*, "class")= chr "rconfig"

The package was inspired by the config package, docker-compose/kubectl/caddy and other CLI tools, and was motivated by some real world need when managing background processing on cloud instances.

Usage

R command line usage

Open the project in RStudio or set the work directory to the folder root after cloning/downloading the repository.

str(rconfig::rconfig())
# List of 5
#  $ trials     : int 5
#  $ dataset    : chr "demo-data.csv"
#  $ cores      : int 1
#  $ user       :List of 1
#   ..$ name: chr "demo"
#  $ description: chr "This is a multi line\ndescription."
#  - attr(*, "command")= chr(0) 
#  - attr(*, "class")= chr "rconfig"

str(rconfig::rconfig(
    file = "rconfig-prod.yml"))
# List of 5
#  $ trials     : int 30
#  $ dataset    : chr "full-data.csv"
#  $ cores      : int 1
#  $ user       :List of 1
#   ..$ name: chr "real_We4$#z*="
#  $ description: chr "This is a multi line\ndescription."
#  - attr(*, "command")= chr(0) 
#  - attr(*, "class")= chr "rconfig"

str(rconfig::rconfig(
    file = c("rconfig.json",
             "rconfig-prod.txt"),
    list = list(user = list(name = "Jack"))))
# List of 5
#  $ trials     : int 30
#  $ dataset    : chr "full-data.csv"
#  $ cores      : int 1
#  $ user       :List of 1
#   ..$ name: chr "Jack"
#  $ description: chr "This is a multi line\ndescription."
#  - attr(*, "command")= chr(0) 
#  - attr(*, "class")= chr "rconfig"

str(rconfig::rconfig(
    file = c("rconfig.json",
             "rconfig-prod.txt"),
    list = list(user = list(name = "Jack")),
    flatten = TRUE))
# List of 5
#  $ trials     : int 30
#  $ dataset    : chr "full-data.csv"
#  $ cores      : int 1
#  $ user.name  : chr "Jack"
#  $ description: chr "This is a multi line\ndescription."
#  - attr(*, "command")= chr(0) 
#  - attr(*, "class")= chr "rconfig"

Set defaults in case some values are undefined:

CONFIG <- rconfig::rconfig(
    file = "rconfig-prod.yml")

rconfig::value(CONFIG$cores, 2L)   # set to 1L
# [1] 1
rconfig::value(CONFIG$test)        # unset
# NULL
rconfig::value(CONFIG$test, FALSE) # use default
# [1] FALSE

The default values are used to ensure type safety:

str(rconfig::value(CONFIG$trials, 0L))    # integer
#  int 30
str(rconfig::value(CONFIG$trials, 0))     # numeric
#  num 30
str(rconfig::value(CONFIG$trials, "0"))   # character
#  chr "30"
str(rconfig::value(CONFIG$trials, FALSE)) # logical
#  logi TRUE

Using alongside of the config package:

conf <- config::get(
    config = "production",
    file = "config.yml",
    use_parent = FALSE)

str(rconfig::rconfig(
    file = "rconfig.yml",
    list = conf))
# List of 5
#  $ trials     : int 30
#  $ dataset    : chr "data.csv"
#  $ cores      : int 1
#  $ user       :List of 1
#   ..$ name: chr "demo"
#  $ description: chr "This is a multi line\ndescription."
#  - attr(*, "command")= chr(0) 
#  - attr(*, "class")= chr "rconfig"

Variable substitution

The rconfig package interprets 3 kinds of substitution patterns:

  • environment variables (${VALUE}): these variables are already present when the configurations is read from the calling environment or from .Renviron file in the project specific or home folder, set variables can be null or not-null
  • R global variables (@{VALUE}): the rconfig package looks for variables in the global environment at the time of configuration evaluation, however, expressions are not evaluated (unlike the !expr option for values)
  • configuration values (#{VALUE}): the configuration level variables are evaluated last, thus these values can refer to existing keys that are already substituted

The substitution pattern can set defaults or error messages, following bash and Docker conventions:

a is set & not null a set but null a is unset
${a:-b} substitute a substitute b substitute b
${a-b} substitute a substitute null substitute b
${a:?b} substitute a error, exit error, exit
${a?b} substitute a substitute null error, exit

The following YAML example has all 3 kinds of variable substitution pattern:

trials: 30
unset:
this-is-null: ""
env:
  dataset: "full-${DATA:-data}.csv"
  url: "https://www.${URL-example}.com"
  user:
    name: "${USER:?Define user name}"
    access: "${ACCESS?Define user access}"
conf:
  path: "#{env.url}/api/v1/"
  text: "User: #{env.user.name} (#{env.user.access})"
  lang: "#{renv.lang}"
renv:
  lang: "@{Lang:-EN}"
  type: "@{Type?Type must be set}"

Set the following variables:

Sys.setenv(USER="Adele")
Sys.setenv(ACCESS="admin")
Type <- "simple"
Lang <- "HU"

This is the substituted version:

trials: 30
this-is-null: ''
env:
  dataset: full-data.csv
  url: https://www.example.com
  user:
    name: Adele
    access: admin
conf:
  path: https://www.example.com/api/v1/
  text: 'User: Adele (admin)'
  lang: HU
renv:
  lang: HU
  type: simple

Using with Rscript

Set the work directory to the inst/examples folder cloning/downloading the repo.

Default config if found (the script has debug mode on):

Rscript test.R
# List of 5
#  $ trials     : int 5
#  $ dataset    : chr "demo-data.csv"
#  $ cores      : int 1
#  $ user       :List of 1
#   ..$ name: chr "demo"
#  $ description: chr "This is a multi line\ndescription."
#  - attr(*, "trace")=List of 2
#   ..$ kind : chr "file"
#   ..$ value: chr "/Users/Peter/git/github.com/analythium/rconfig/inst/examples/rconfig.yml"
#  - attr(*, "command")= chr(0) 
#  - attr(*, "class")= chr "rconfig"

Default with debug mode off:

R_RCONFIG_DEBUG="FALSE" Rscript test.R
# List of 5
#  $ trials     : int 5
#  $ dataset    : chr "demo-data.csv"
#  $ cores      : int 1
#  $ user       :List of 1
#   ..$ name: chr "demo"
#  $ description: chr "This is a multi line\ndescription."
#  - attr(*, "command")= chr(0) 
#  - attr(*, "class")= chr "rconfig"

Change default config file:

R_RCONFIG_FILE="rconfig-prod.yml" Rscript test.R
# List of 3
#  $ trials : int 30
#  $ dataset: chr "full-data.csv"
#  $ user   :List of 1
#   ..$ name: chr "real_We4$#z*="
#  - attr(*, "trace")=List of 2
#   ..$ kind : chr "file"
#   ..$ value: chr "/Users/Peter/git/github.com/analythium/rconfig/inst/examples/rconfig-prod.yml"
#  - attr(*, "command")= chr(0) 
#  - attr(*, "class")= chr "rconfig"

Change default config file and debug off:

R_RCONFIG_FILE="rconfig-prod.yml" R_RCONFIG_DEBUG="FALSE" Rscript test.R
# List of 3
#  $ trials : int 30
#  $ dataset: chr "full-data.csv"
#  $ user   :List of 1
#   ..$ name: chr "real_We4$#z*="
#  - attr(*, "command")= chr(0) 
#  - attr(*, "class")= chr "rconfig"

Use file and other props to override default:

Rscript test.R -f rconfig-prod.yml --user.name "unreal_Zh5z*$#="
# List of 5
#  $ trials     : int 30
#  $ dataset    : chr "full-data.csv"
#  $ cores      : int 1
#  $ user       :List of 1
#   ..$ name: chr "unreal_Zh5z*0="
#  $ description: chr "This is a multi line\ndescription."
#  - attr(*, "trace")=List of 2
#   ..$ kind : chr "merged"
#   ..$ value:List of 3
#   .. ..$ :List of 2
#   .. .. ..$ kind : chr "file"
#   .. .. ..$ value: chr "/Users/Peter/git/github.com/analythium/rconfig/inst/examples/rconfig.yml"
#   .. ..$ :List of 2
#   .. .. ..$ kind : chr "file"
#   .. .. ..$ value: chr "/Users/Peter/git/github.com/analythium/rconfig/inst/examples/rconfig-prod.yml"
#   .. ..$ :List of 2
#   .. .. ..$ kind : chr "args"
#   .. .. ..$ value: chr "--user.name unreal_Zh5z*0="
#  - attr(*, "command")= chr(0) 
#  - attr(*, "class")= chr "rconfig"

Use JSON string and other props to override default:

Rscript test.R \
  -j '{"trials":30,"dataset":"full-data.csv","user":{"name": "real_We4$#z*="}}' \
  --user.name "unreal_Zh5z*$#="
# List of 5
#  $ trials     : int 30
#  $ dataset    : chr "full-data.csv"
#  $ cores      : int 1
#  $ user       :List of 1
#   ..$ name: chr "unreal_Zh5z*0="
#  $ description: chr "This is a multi line\ndescription."
#  - attr(*, "trace")=List of 2
#   ..$ kind : chr "merged"
#   ..$ value:List of 3
#   .. ..$ :List of 2
#   .. .. ..$ kind : chr "file"
#   .. .. ..$ value: chr "/Users/Peter/git/github.com/analythium/rconfig/inst/examples/rconfig.yml"
#   .. ..$ :List of 2
#   .. .. ..$ kind : chr "json"
#   .. .. ..$ value: chr "{\"trials\":30,\"dataset\":\"full-data.csv\",\"user\":{\"name\": \"real_We4$#z*=\"}}"
#   .. ..$ :List of 2
#   .. .. ..$ kind : chr "args"
#   .. .. ..$ value: chr "--user.name unreal_Zh5z*0="
#  - attr(*, "command")= chr(0) 
#  - attr(*, "class")= chr "rconfig"

rconfig also interprets verb/noun syntax, where verbs are sub-commands following the R script file name and preceding the command line flags (starting with - or --):

Rscript test.R deploy --user.name "unreal_Zh5z*$#="
# List of 5
#  $ trials     : int 5
#  $ dataset    : chr "demo-data.csv"
#  $ cores      : int 1
#  $ user       :List of 1
#   ..$ name: chr "unreal_Zh5z*0="
#  $ description: chr "This is a multi line\ndescription."
#  - attr(*, "trace")=List of 2
#   ..$ kind : chr "merged"
#   ..$ value:List of 2
#   .. ..$ :List of 2
#   .. .. ..$ kind : chr "file"
#   .. .. ..$ value: chr "/Users/Peter/git/github.com/analythium/rconfig/inst/examples/rconfig.yml"
#   .. ..$ :List of 2
#   .. .. ..$ kind : chr "args"
#   .. .. ..$ value: chr "deploy --user.name unreal_Zh5z*0="
#  - attr(*, "command")= chr "deploy"
#  - attr(*, "class")= chr "rconfig"

For a more realistic but still small example, let’s use the iris data and get summaries by species using command line arguments:

Rscript iris.R --species virginica
#   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
#  Min.   :4.900   Min.   :2.200   Min.   :4.500   Min.   :1.400  
#  1st Qu.:6.225   1st Qu.:2.800   1st Qu.:5.100   1st Qu.:1.800  
#  Median :6.500   Median :3.000   Median :5.550   Median :2.000  
#  Mean   :6.588   Mean   :2.974   Mean   :5.552   Mean   :2.026  
#  3rd Qu.:6.900   3rd Qu.:3.175   3rd Qu.:5.875   3rd Qu.:2.300  
#  Max.   :7.900   Max.   :3.800   Max.   :6.900   Max.   :2.500
Rscript iris.R --species setosa --verbose
# 2023-06-26 22:27:09 - Started
# Getting summaries for species setosa
#   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
#  Min.   :4.300   Min.   :2.300   Min.   :1.000   Min.   :0.100  
#  1st Qu.:4.800   1st Qu.:3.200   1st Qu.:1.400   1st Qu.:0.200  
#  Median :5.000   Median :3.400   Median :1.500   Median :0.200  
#  Mean   :5.006   Mean   :3.428   Mean   :1.462   Mean   :0.246  
#  3rd Qu.:5.200   3rd Qu.:3.675   3rd Qu.:1.575   3rd Qu.:0.300  
#  Max.   :5.800   Max.   :4.400   Max.   :1.900   Max.   :0.600  
# 2023-06-26 22:27:09 - Done
Rscript iris.R --species maxima --verbose
# 2023-06-26 22:27:09 - Started
# Error: Provide a valid species
# Execution halted
Rscript iris.R
# Error: Species not provided
# Execution halted

Check out the iris_rlog.R file to see an example with proper logging.

Another illustration using the mtcars data set to fit linear models to different variables:

Rscript mtcars.R
# (Intercept)         cyl        disp          hp        drat          wt 
# 12.30337416 -0.11144048  0.01333524 -0.02148212  0.78711097 -3.71530393 
#        qsec          vs          am        gear        carb 
#  0.82104075  0.31776281  2.52022689  0.65541302 -0.19941925
Rscript mtcars.R --verbose --vars cyl
# 2023-06-26 22:27:09 - Started
# (Intercept)         cyl 
#    37.88458    -2.87579 
# 2023-06-26 22:27:09 - Done
Rscript mtcars.R --verbose --vars cal
# 2023-06-26 22:27:09 - Started
# Error: Not valid variable
# Execution halted
Rscript mtcars.R --vars cyl disp hp
# (Intercept)         cyl        disp          hp 
# 34.18491917 -1.22741994 -0.01883809 -0.01467933

Let’s see how to use sub-commands:

## This will print messages:
Rscript commands.R model

## This will not print messages:
Rscript commands.R model --silent
# Model ...
Rscript commands.R predict
# Predict ...
Rscript commands.R fit
# Error: Command fit not found.
# Execution halted
Rscript commands.R
# Error: Specify a command.
# Execution halted

Here is how to make the R script executable on Linux (of course you’ll need rconfig installed for this to work):

sudo cp ./inst/examples/commands.R /usr/local/bin/
sudo chmod +x /usr/local/bin/commands.R

Make sure that the R script has the shebang (#!/usr/bin/env Rscript) as the 1st line, and now can drop the Rscript part and use the script as commands.R model.

Shiny

An example to configure a Shiny app with command line flags:

Rscript shiny/app.R

Rscript shiny/app.R \
  --test \
  --value 1000 \
  --color 'pink' \
  --title 'Only Testing'

An example to configure a Shiny app using the golem with command line flags:

# app.R
CONFIG <- rconfig()
yourpkg::run_app(
  title = value(CONFIG$title, "Hello Shiny!"),
  test = value(CONFIG$test, FALSE),
  color = value(CONFIG$color, "purple"),
  options = list(port = value(CONFIG$port, 8080)))
## then in terminal
Rscript app.R \
  --test \
  --value 1000 \
  --color 'pink' \
  --title 'Only Testing' \
  --port 3838

Plumber

An example to configure a Plumber API with command line flags:

cd plumber

Rscript index.R

# httr::POST("http://127.0.0.1:8080/echo?msg=Cool") |> httr::content()
# httr::GET("http://127.0.0.1:8080/test") |> httr::content()

Rscript index.R \
  --test \
  --port 8000 \
  --title 'The echoed message is'

# httr::POST("http://127.0.0.1:8000/echo?msg=Cool") |> httr::content()
# httr::GET("http://127.0.0.1:8000/test") |> httr::content()

License

MIT License © 2022 Peter Solymos and Analythium Solutions Inc.